Predicting heart disease in people with type 2

Monday, 9 November 2020

Researchers from the University of Sydney Faculty of Engineering have developed a model that aims to predict the risk of heart disease in people living with type 2 diabetes.

The model has been found to have a prediction accuracy range of 79 to 88 percent.

The study showcases the potential of machine learning in medicine, by using complex patient datasets and compiling them to find risk factors that contribute to a higher likelihood for a disease.

Heart disease and diabetes

Worldwide, nearly half a billion people live with type 2 diabetes. In Australia the number is inching closer to 1.3 million each day.

“According to our study, people living with type 2 diabetes have a higher chance of developing heart disease.

However, it’s not always clear who will develop it, and testing and monitoring can be time consuming and expensive,” said the study’s lead researcher, Dr Shahadat Uddin.

About the research

In a collaborative effort the research team developed the model using administrative data provided by private health fund, CBHS.

The administrative datasets were gathered from private hospitals in Australia, which contained patient admission information and discharge summaries.

“Our study found that the prevalence of serious health complications like renal failure, fluid and electrolyte disorders, hypertension and obesity was significantly higher in patients with both cardiovascular disease and type 2 diabetes than patients with only type 2 diabetes,” said Dr Uddin.

“These chronic diseases, disorders and conditions occurred frequently during the progression of cardiovascular disease in patients with type 2 diabetes,” he said.

Machine learning supports diagnosis

“What this study has revealed is that machine learning and network analysis of health data can be used to better understand disease progression.

“Our comorbidity risk prediction model could be useful for medical practice and stakeholders, including government and private health insurers, to develop health management programs for patients at high risk of developing multiple chronic diseases.”

The team has developed a software tool, now in a beta version, to implement the model.

One key learning from the research was that coding systems vary across hospitals and healthcare providers, making it difficult to quantify disease risk.

“To gain a more cohesive and broad understanding of heart disease risks in type 2 diabetes patients, our study suggests a universal coding practice, which would allow researchers to better analyse health data,” said Dr Uddin.

Join our community of over 45,000 people living with diabetes