Medical records could be used to predict type 2

Wednesday, 2 May 2018

Sydney researchers believe untapped electronic medical records could be used to predict when a person is at risk of developing type 2 diabetes.

In a new study published in the International Journal of Medical Informatics, researchers from the University of Sydney and the Capital Markets Cooperative Research Centre (CMCRC) analysed 1.4 million admission records from nearly 1 million de-identified patients using routinely collected administrative healthcare data. The dataset was then filtered and sampled to obtain a set of 2300 patients with diabetes and 2300 patients without diabetes.

Using advanced data mining and network analysis techniques, the researchers evaluated the health of the group and developed a ‘comorbidity network’ – a way of visualising the health journey of these patients.

As shown in the image above, this network models the relative prevalence of type 2 diabetes comorbidities – additional diseases or disorders occurring at the same time as a primary disease  – and their transition patterns, representing the progression of type 2 diabetes.

In the network image, the size of the nodes (circles) and labels are proportional to the prevalence of corresponding health conditions. Nodes marked in the same colour belong to same clusters of related health conditions. Arcs, in clockwise direction, indicate transition from one health condition to another.

The researchers found that, over time, prevalence of comorbidities in the group of patients living with diabetes was almost double that of the second group over time, showing entirely different ways of disease progression.

“It is well known that chronic diseases such as type 2 diabetes do not occur in isolation, and have a shared set of causes common to many other diseases and disorders,” said study lead author Arif Khan, a postdoctoral researcher from the Centre for Complex Systems in the Faculty of Engineering and Information Technologies.

“Chronic diseases like type 2 diabetes progress slowly and, in many cases, patients are unaware of their condition. When they are admitted in to hospital for any incidence, type 2 diabetes often comes up as secondary diagnosis. This makes the overall treatment plan more complex, increasing ‘Length of Stay’ in hospital and cost.

“The aim of our research is to understand how this health trajectory differs between type 2 diabetes and non-type 2 diabetes patients with the help of comorbidity network.”

Study co-author Dr Shahadat Uddin, also from the Centre for Complex Systems and the Charles Perkins Centre, said the comorbidity network could help healthcare providers proactively identify patients at higher risk of developing chronic disease.

“By using existing administrative healthcare data – which are routinely collected but often neglected in health research – we have been able to understand the ‘disease footprints’ left by chronic patients,” Dr Uddin said.

“These insights can subsequently help healthcare providers to better understand high-risk diseases and to formulate appropriate preventive health policies,” added study co-author Dr Uma Srinivasan from the CMCRC.

The researchers predicted their ‘comorbidity network’ could also be used effectively to monitor other chronic diseases, such as cardiovascular diseases.

The dataset used for this study was provided by data custodians Capital Markets CRC Ltd. and HAMBS Ltd.


Keywords: researchtype 2

Join our community of over 45,000 people living with diabetes